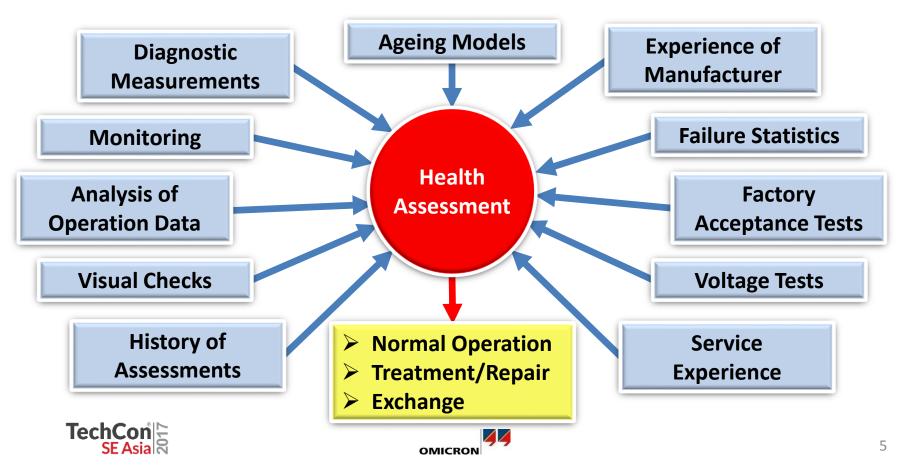


Transformer Health Assessment

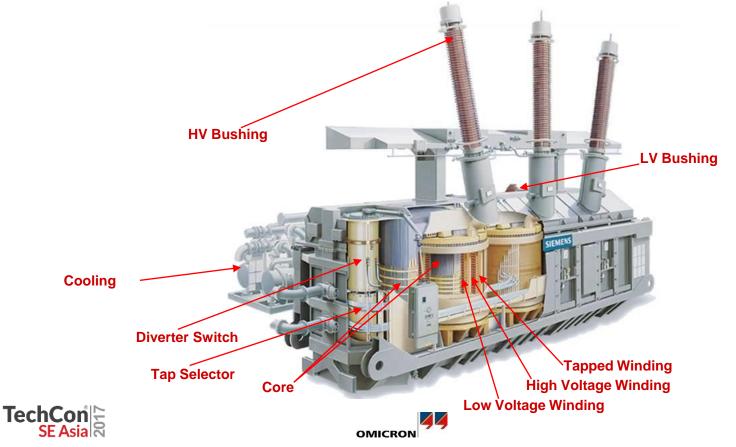
Michael Krueger OMICRON, Austria

Transformer Health Assessment

- Introduction
- Diagnostic on Power Transformers
 - Oil
 - Main Insulation
 - Magnetic Core and Coil
 - Diagnostic of the Bushings
 - Diagnostic of the Tap Changer
- Case Study Health Assessment of a Transformer


Work of Cigre - Transformer Health Assessment

Cigre WG	Торіс	Brochure	Year
A2.18	Life Management Techniques for Power Transformers	227	2003
A2.27	Recommendations for Condition Monitoring and Conditioning Assessment for Transformers	343	2008
A2.34	Guide for Transformer Maintenance	445	2011
A2.37	Transformer Reliability Survey	642	2015
A2.43	Bushing Reliability		
A2.44	Intelligent Conditioning Monitoring Systems	630	2015
A2.45	Transformer Failure Investigation and Post-Mortem Analysis		
A2.49	Condition Assessment of Power Transformers		
A2.55	Life Extension of Oil Filled Transformers and Shunt Reactors		



Assessment of Transformer Health

Components of a Generator Step-Up Transformer

Indicators used to Estimate the Health Index

Indicator	Description
Failure rate of similar transformers	Failure data is used to identify less reliable transformer families. Transformer families are created for equipment with the same specification, manufacturer, similar serial numbers and years of manufacture, etc.
Solid insulation	Paper aging markers measured in transformer oil such as methanol, furans and CO/CO2 content (depending on data availability).
Dissolved Gas Analysis	DGA index is calculated based on the absolute values of the different gases measured, the evolution of these gases and the ranking coefficients for each gas.
On-Load Tap Changer	Information on the reliability of the OLTC design and the maintenance record.
Bushing	Information on bushing type reliability and maintenance record.
Moisture content	Moisture content in oil is measured to estimate the water content in the paper.
Oil tests 💦	Oil quality is characterized based on acidity, interfacial tension, dielectric strength and power factor.
Accessories reliability	This indicator is derived from the number of repairs carried out to fix problems on accessories.
Oil leaks	This indicator is derived from the number of repairs carried out to fix oil leaks.

P. Picher et. al. "Use of Health and Reliability Dta for Transformer Conditioning Assessment and Fleet Ranking", A2-101, Cigre Paris 2014

OMICRON

Assessment of Risks

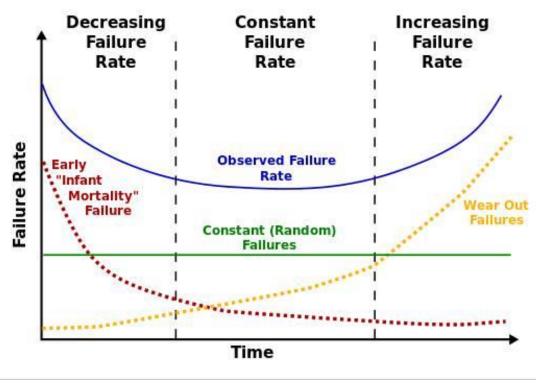
item	Condition Criteria	Condition Criteria Weight, Wi			
1	DGA	10	4	40	
2	Load History	10	4	40	
3	Insulation PF	10	4	40	
4	Infra-Red	10	4	40	
5	Oil Quality Parameters	8	4	32	
6	Overall Condition	6	4	24	
7	Furans	6	4	24	
8	Bushing Condition	5	4	20	
9	Corrosion/Paint	2	4	8	
10	Cooling Equipment	2	4	8	
11	Oil Tank Corrosion	1 4		4	
12	Foundation	1	4	4	
13	Grounding	1	4	4	
14	Gaskets, seals	1	4	4	
15	Connectors	1	4	4	
16	Oil Leaks	1	4	4	
17	Oil Level	1	4	4	
18	LTC DGA	6	4	24	
19	LTC Oil Quality	3	4	12	
20	Overall LTC Condition	2	4	8	
	Sum of weights	87	Total (S x Wi)	348	

 $H.I = \frac{\sum (Wi \times Si)}{\sum (Wi \times Si max)}$

H.I. = 100.0%

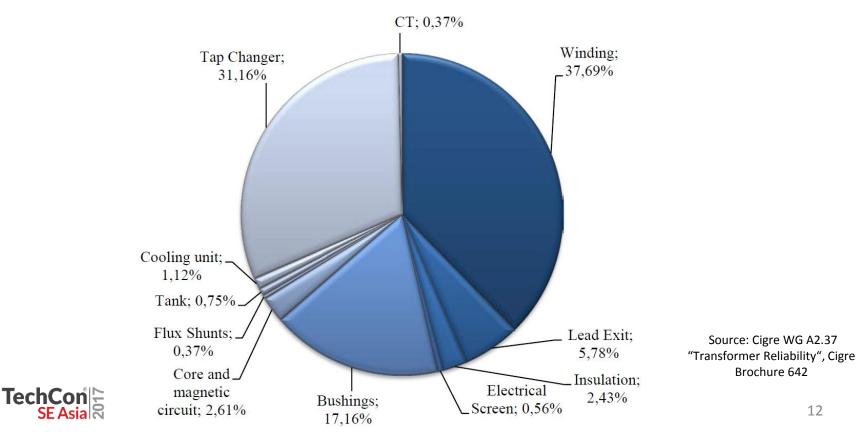
Transformer Assessment

Date of assessment	2016-12-30			Tre	ansfo	- rm	or A	~~~~	oom	ont		
Responsible	XXX			II	ansi	JIII	er A	sse	5511	ent		
Location/Substation	XXX											
Transformer ID	XXX			Asse	ssment	2						
Serial number	XXX		Exc	change	priority	2						
Year of manufacturing	1983											
Expected life time (years)	45											
		new									old	
		10	9	8	7	6	5	4	3	2	1	
Transformer age	33 Years	6							Х			
		excelle	ent								bad	
		10	9	8	7	6	5	4	3	2	1	
										Х		Remarks
Core						Х						
Winding						Х						
Cellulose insulation						Х						no ageing detectible
Oil						Х						normal ageing
HV bushings										Х		1N -> increased capacitance and tan δ
LV bushings										Х		2W -> increased capacitance
Tap changer								Х				
Motor drive								Х				
Cooling system								Х				1 cooling group renewed
Oil leak							Х					
Corrosion protection							Х					
LV wiring and protection							Х					

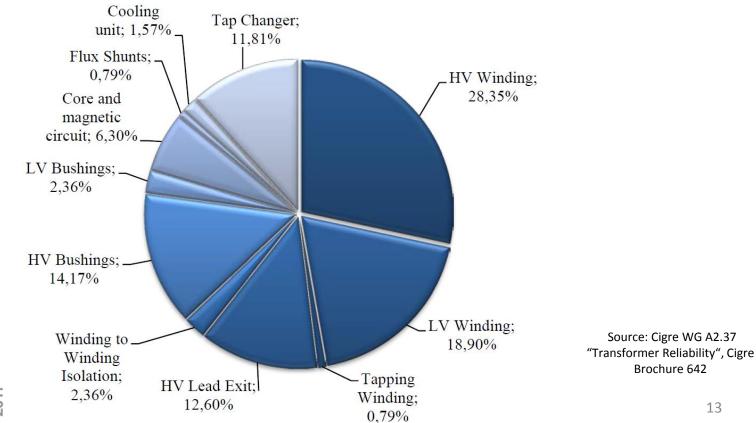

Transformer Assessment

10	9	8	7	6
Excellent condition	Excellent condition	Very good condition	Good condition	Satisfactory condition
no diagnostic and repair measures in the long term	long-term no diagnostic and repair measures	long-term no diagnostic and repair measures expected	no immediate action required	no immediate action required
No recognizable defects exist	No notable defects exist	Negligible deficiencies exist	Small deficiencies present, long term measures required	Major deficiencies exist, medium- term measures necessary
5	4	3	2	1
Moderate condition	Sufficient condition	Poor condition	Insufficient condition	Very bad condition
no immediate action required	partial repair necessary	partial repair necessary	partial repair necessary, increased operating risk	immediate general repair necessary
Major deficiencies exist, short-term	Severe shortcomings, operation of	Severe shortcomings, operation of	Safe operation of the system	Safe operation of the system no
measures necessary	the plant in the medium term with increased operational risk	the system in the short term with increased operational risk	without online monitoring no longer ensured	longer ensured

Bathtube Curve of Failure Rate



Source: Wikipedia Feb. 2014



Failure Locations of Substation Transformers > 100kV

Failure Locations of Generator Step-up Transformers > 100kV

Causes of Ageing

- Dielectric causes
- Electromagnetic causes
- Thermal causes
- Chemical causes

Electromagnetic Causes of Ageing

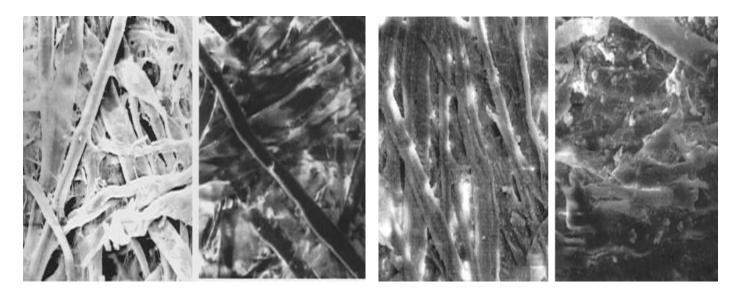
High currents (e.g. due to short circuits nearby the transformer) produce high mechanical forces

- Deformation of the winding
- Damage of the paper insulation (cracks), particularly on aged parts
- Initiation of partial discharges
- Initiation of partial break-downs

Thermal Causes of Ageing

- Hysteresis losses in the magnetic core
- Shorted laminates
- Resistive losses in the windings
- Dielectric losses in the insulation
- Load changes will cause warming up and cooling down negative influence on the lifetime of the insulation
- The ageing of the insulation is accelerated by a factor 2, if the temperature is increased by 7°C (valid for normal operation temperatures)

Chemical Causes of Ageing


Organic acids are produced as a result of ageing

- In particular, they affect the paper insulation
 -> accelerated ageing
- Metals like Copper, Iron, Aluminium and Zinc are behaving like catalysts
 -> accelerated ageing

Ageing of the Cellulose by Acids

Microstructure of paper with Neutralization Number [mg/kg] (from left to right) 0.05 0.1 0.2 0.3

Ageing in the Cellulose

- Ageing of Cellulose is caused by:
- the influence of oxygen

 \rightarrow Oxidation

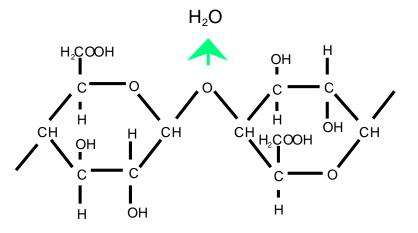
• the influence of water

 \rightarrow Hydrolysis

• the influence of heat

→ Pyrolysis

Ageing of Paper

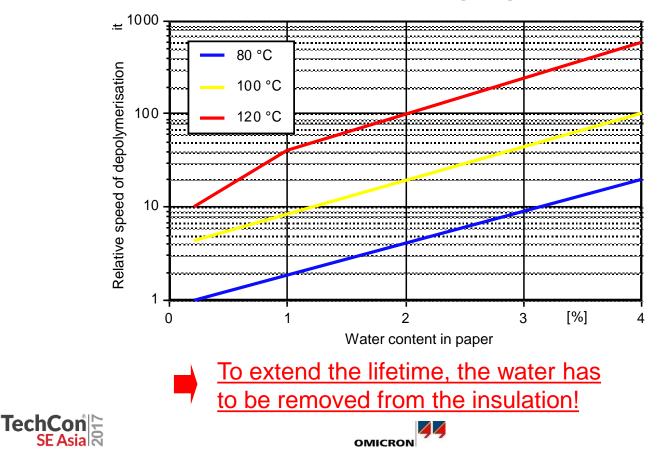

As the cellulose ages, the glucose ring chains break (depolymerisation). The following substances are produced:

Water

Gases (CO, CO2)

Furanes

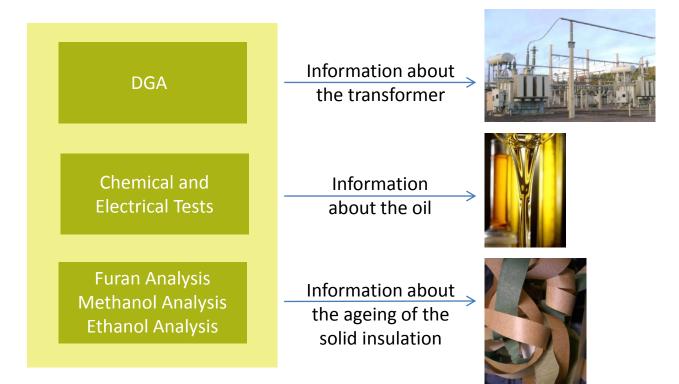
Carboxyl Groups (organic acids)



Water as Ageing Factor

Water and heat accelerate the ageing of the Cellulose

21


Transformer Health Assessment

- Introduction
- Diagnostic on Power Transformers
 - Oil
 - Main Insulation
 - Magnetic Core and Coil
 - Diagnostic of the Bushings
 - Diagnostic of the Tap Changer
- Case Study Health Assessment of a Transformer

Information from Oil Analysis

IEC 60422

Table 3 – Recommended limits for mineral insulating oils after filling in new electrical equipment prior to energization

Property	Highest voltage for equipment kV							
	<72,5	72,5 to 170	>170					
Appearance	Clear, free fro	om sediment and su	spended matter					
Colour (on scale given in ISO 2049)	Max. 2,0	Max. 2,0	Max. 2,0					
Breakdown voltage (kV)	>55	>60	>60					
Water content (mg/kg)ª	20 b	<10	<10					
Acidity (mg KOH/g)	Max. 0,03	Max. 0,03	Max. 0,03					
Dielectric dissipation factor at 90ºC and 40 Hz to 60 Hz º	Max. 0,015	Max. 0,015	Max. 0,010					
Resistivity at 90 °C (GΩm)	Min. 60	Min. 60						
Oxidation stability	A	s specified in IEC 6	0296					
Interfacial tension (mN/m)	Min. 35	Min. 35	Min. 35					
Total PCB content (mg/kg)	N	ot detectable (< 2 to	otal)					
Particles	 11 11	191	See Table B.1d					

IEC 60422

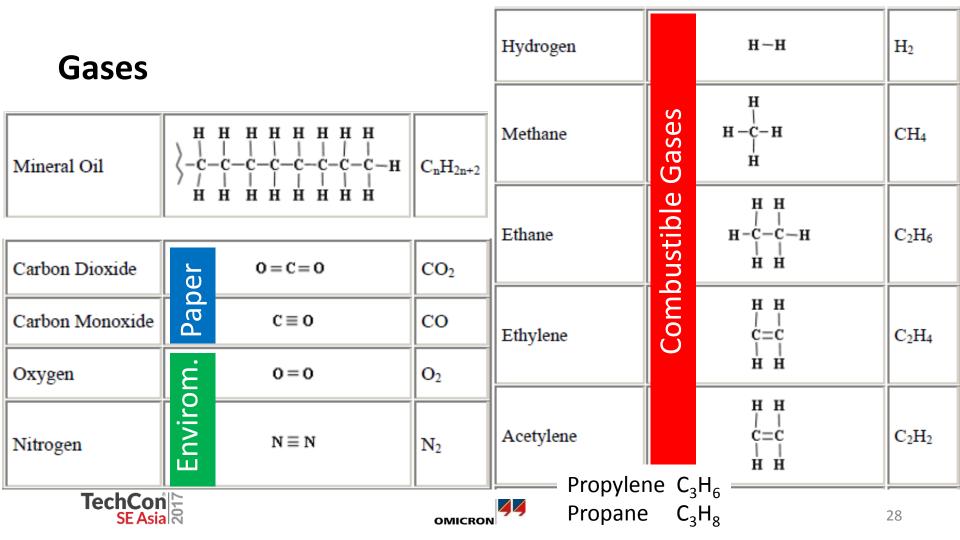
Water Saturation in Oil

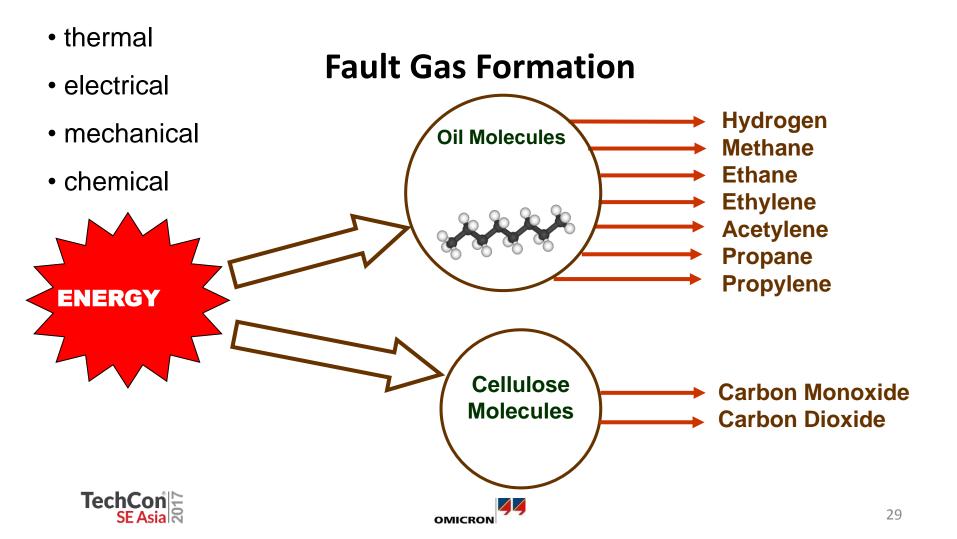
Table A.1 – Guidelines for interpreting data expressed in percent saturation

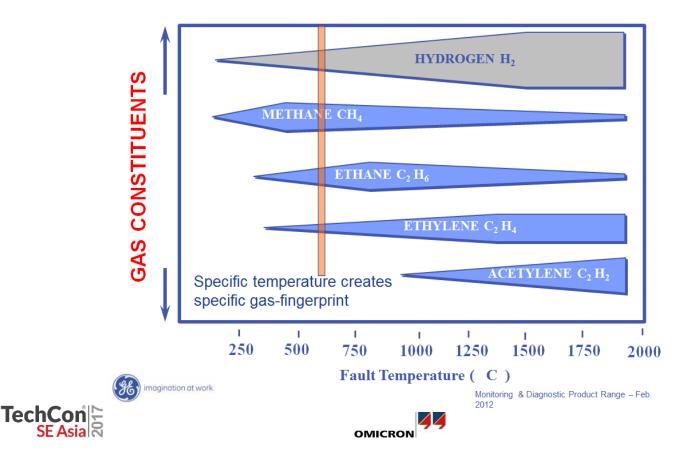
Percent saturation water in oil	Condition of cellulosic insulation					
0 % - 5 %	Dry insulation.					
6 % - 20 %	Moderately wet, low numbers indicate fairly dry to moderate levels of water in the insulation. Values toward the upper limit indicate moderately wet insulation.					
21 % - 30 %	Wet insulation.					
>30 %	Extremely wet insulation.					
Source : IEEE C57.106:2002 [6].						

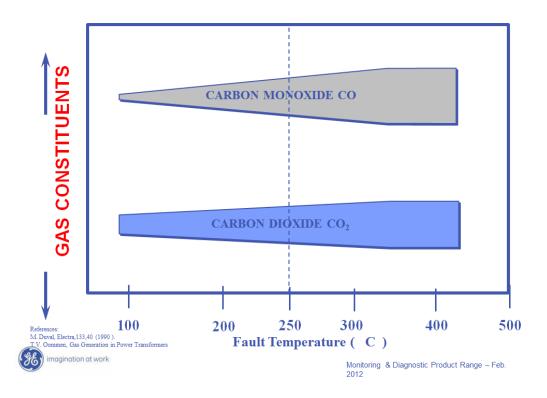
Gases in Oil caused by PD

OMICRON




Gases in Oil caused by PD


OMICRON



Gas Formation from Oil Dependent on the Temperature

Gas Formation from Cellulose Dependent on the Temperature

Key Gases

1. Partial discharges							
a. Oil	H ₂						
b. Cellulose	H_2 , CO , CO_2						
2. Pyrolysis							
a. Oil							
Low temperature	CH_4 , C_2H_6						
High temperature	C_2H_4 , H_2 (CH_4 , C_2H_6)						
b. Cellulose							
Low temperature	CO ₂ (CO)						
High temperature	CO (CO ₂)						
3. Arcing	$H_2, C_2H_2 (CH_4, C_2H_6, C_2H_4)$						
44							

OMICRON

Cigre Brochure 296 – Typical Gas Values

Table 3 : Ranges of 90 % typical (TGC) values surveyed by TF11 for power transformers ^{a,m,p,f,e,d,b,q}, in ppm

				II			
	C2H2	H2	CH4	C2H4	C2H6	CO	CO2
All transformers		50-	30-	60-	20-	400-	3800-
		150	130	280	90	600	14000
No OLTC	2-20						
Communicating	60-280						
OLTC							

 Table 4: Ranges of 90 % typical rates of gas increase (TRGI) surveyed by CIGRE

 TF11 for power transformers, in ppm/year ^{a,b,d,e}

	C2H2	H2	CH4	C2H4	C2H6	CO	CO2
All transformers		35-	10-	32-	5-	260-	1700-
		132	120	146	90	1060	10,000
No OLTC	0-4						
Communicating	21-37]					
OLTC							
	ł	•		\searrow			

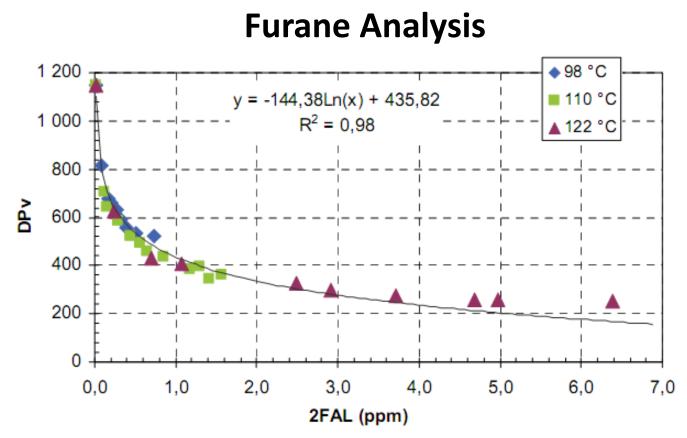
Cigre Brochure 443

Oil Sampling Intervals versus Gas Concentrations

Concentration	H ₂	CH ₄	C ₂ H ₄	C_2H_6	C_2H_2	CO	CO ₂	TDCG	Sampling intervals
Typical	100	80	170	55	3	500	8900	908	Yearly
Level 2	180	129	270	126	13	766	14885	1542	Monthly
Level 3	254	170	352	205	32	983	20084	2101	Weekly
Level 4	403	248	505	393	102	1372	29980	3175	Daily
Pre-failure	725	400	800	900	450	2100	50000	5380	Hourly

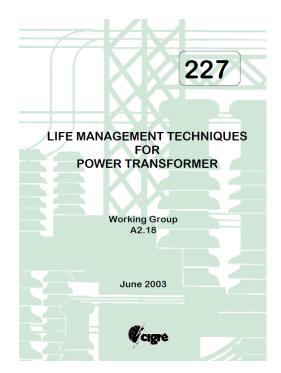
IEEE Std C57.104

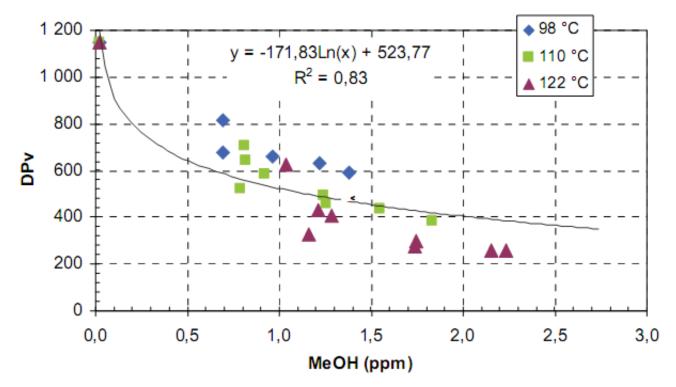
Table 1—Dissolved gas concentrations


	Dissolved key gas concentration limits [µL/L (ppm) ^a]											
Status	Hydrogen (H ₂)	Methane (CH ₄)	Acetylene (C ₂ H ₂)	Ethylene (C ₂ H ₄)	Ethane (C ₂ H ₆)	Carbon monoxide (CO)	Carbon dioxide (CO ₂)	TDCG ^b				
Condition 1	100	120	1	50	65	350	2 500	720				
Condition 2	101-700	121-400	2–9	51-100	66-100	351-570	2 500-4 000	721-1920				
Condition 3	701-1800	401-1000	10-35	101-200	101-150	571-1400	4 001-10 000	1921-4630				
Condition 4	>1800	>1000	>35	>200	>150	>1400	>10 000	>4630				

NOTE 1—Table 1 assumes that no previous tests on the transformer for dissolved gas analysis have been made or that no recent history exists. If a previous analysis exists, it should be reviewed to determine if the situation is stable or unstable. Refer to 6.5.2 for appropriate action(s) to be taken.

NOTE 2—An ASTM round-robin indicated variability in gas analysis between labs. This should be considered when having gas analysis made by different labs.


Source: B.Yves, et al.: "MV/LV distribution transformers: Research on paper ageing markers", Cigre D1.103, 2012


Warning Levels

Paper Degradation Cigre Brochure 227 - 2003

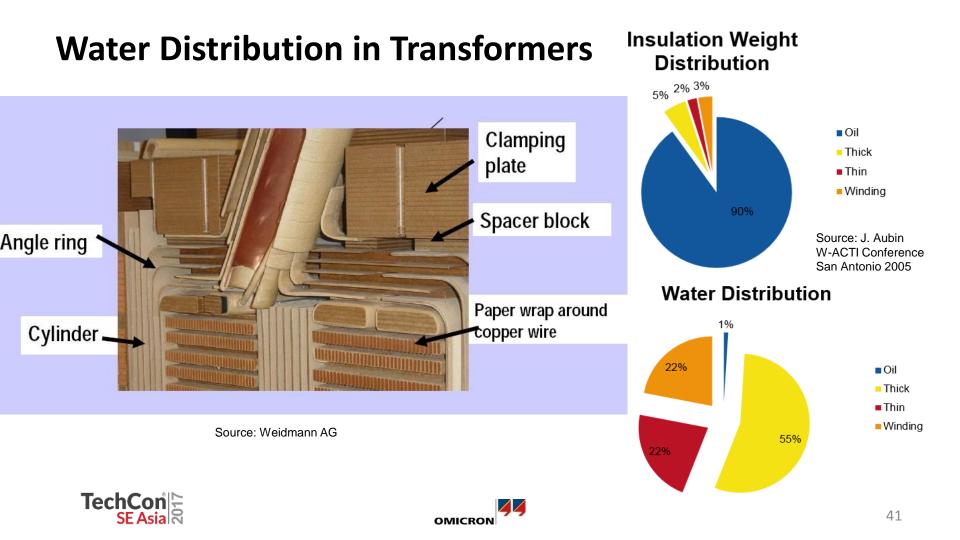
Characteristics	Caution levels	Alarm levels
СО	<pre>> 540-900 ppm [IEC] > 350 ppm [IEEE] > 300 [19] > 15 litres [28] 351-570 [EPRI, modest concern]</pre>	>1400 [IEEE] >1400 [EPRI, imminent risk]
CO ₂	>5100-13000 ppm[IEC] >2500 ppm [IEEE] 2400-4000 [EPRI, modest concern]	> 10000 [IEEE] >10000 [EPRI, imminent risk]
CO+CO ₂	10000 ??m [CIGRE WG15.01} 0.2 ml/g hot spot mass [<u>19</u>]	> 2 ml/g for hot spot mass [19]
CO ₂ /CO	<3 [<u>30</u>]	
Furfural	 > 1.5 ppm [19] Rate of generation: Log Y_f = 11.76 - 6723/T [29] T: absolute temperature of paper insulation 	> 15 ppm [<u>19</u>]
Furans (total) [27, 109] (Likely for thermally upgraded paper)	100 ppb-First signal; tests after a year 250 ppb-Expected DP <400; test after 6 Months	100 ppb - Expected DP 330-230;Risk of Failure; Test of oil monthly. Consider oil reclaiming 2500 ppb: Expected DP< 217; Consider replacement
DP	< 400 [IEC]	< 200 [IEEE] 37 < 450 [19]

Methanole MeOH Analysis

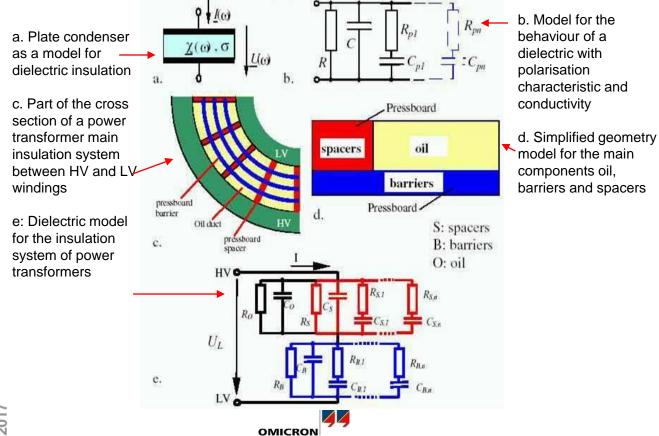
Source: B.Yves, et al.: "MV/LV distribution transformers: Research on paper ageing markers", Cigre D1.103, 2012

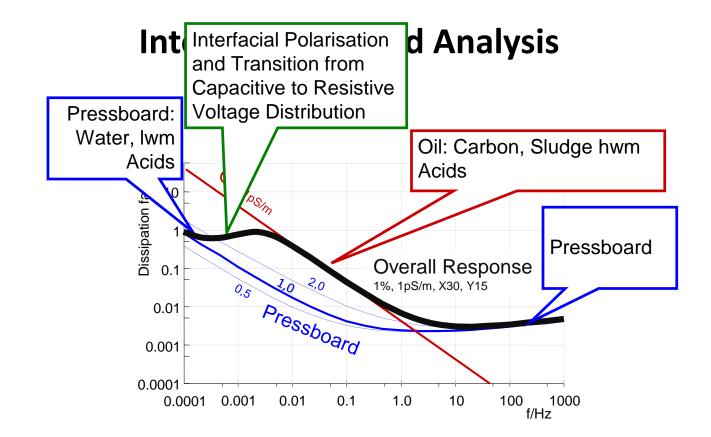
Transformer Health Assessment

- Introduction
- Diagnostic on Power Transformers
 - Oil
 - Main Insulation
 - Magnetic Core and Coil
 - Diagnostic of the Bushings
 - Diagnostic of the Tap Changer
- Case Study Health Assessment of a Transformer

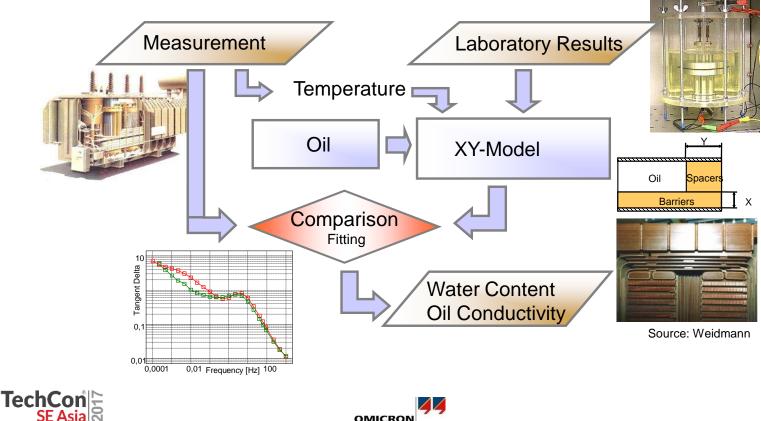


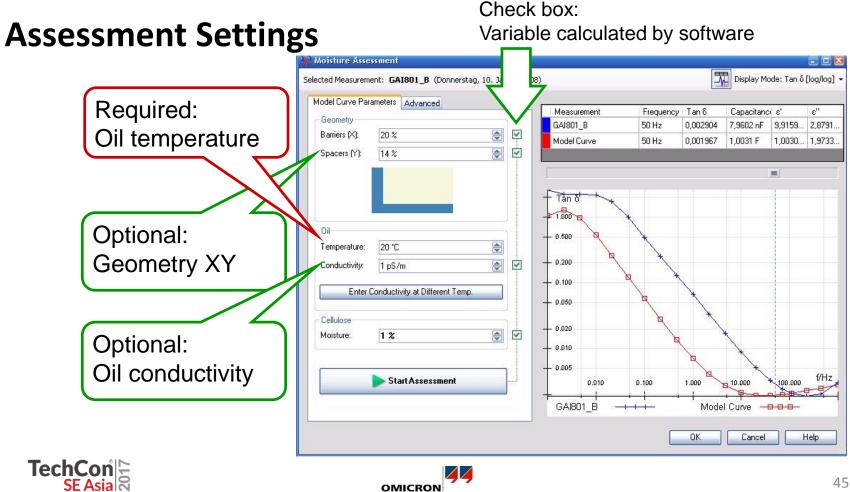
Main Insulation


- Water Content Measurement with Dielectric Frequency Response
- Insulation Resistance Measurement
- Capacitance and Dielectric Dissipation Factor Measurement
- Partial Discharge Measurement



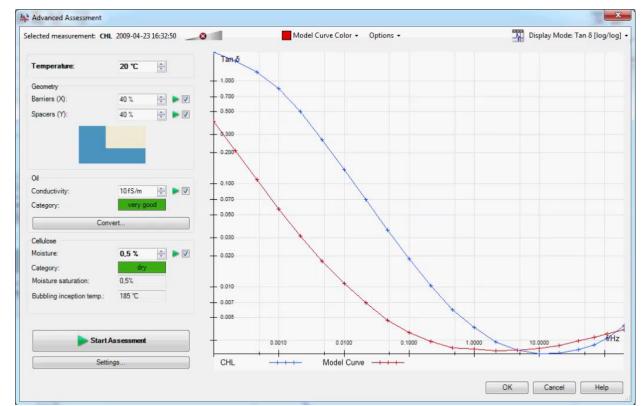
Equivalent Circuit Diagram





Analysis of the Water Content by Comparison to Model Results

OMICRON



OMICRON

Moisture Assessment

before fitting T = 20°C Barriers: 40 % Spacers: 40 % WC: 0,5 %

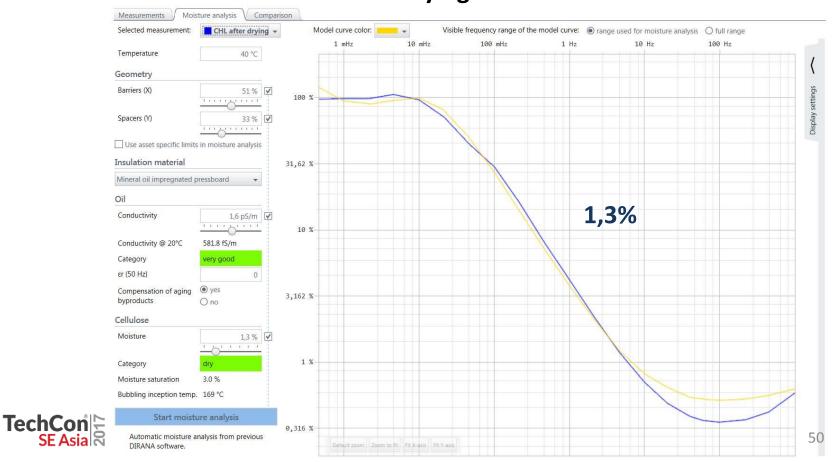
after fitting T = 30°C Barriers: 35 % Spacers: 24 % WC: 1,2 %

DFR Measurement on a 200 MVA Transformer

Transformer

DFR Measurement on a 200 MVA Transformer Before Drying

Measurement on a 200 MVA Transformer


Decision:

Drying of the transformer



DFR Measurement on a 200 MVA Transformer After Drying

DFR Measurement Before and After Drying

Main Insulation

- Water Content Measurement with Dielectric Frequency Response
- Insulation Resistance Measurement
- Capacitance and Dielectric Dissipation Factor Measurement
- Partial Discharge Measurement

Insulation Resistance Measurement 220kV Transformer before and after Drying

			Measure	ment	s	Α	Ri	PI	DAR
			CHL before	drying	60 s	355,0379 nA	0,5633 GΩ	1,813	1,41
in							1,6654 GΩ	3,947	1,45
	Measurement	S	Ri		ΡI	DAR	1,0481 GΩ	3,021	1,51
		000 -	4 0040 00		040	4 44	2,1881 GΩ	4,977	1,61
- Harris	CHL before drying	600 s	1,0212 GΩ	2 1	,813	3 1,41			
		000	0.5700.000		0.47	4 45	Ri	PI	DAR
	CHL after drying	600 s	6,5739 GC	23	,947	1,45	1,0212 GΩ	1,813	1,41
				rying	000 5	30,4232 NA	-b,5739 GΩ	3,947	1,45
			CLT before	drying	600 s	63,1595 nA	3,1666 GΩ	3,021	1,51
DIRANA			CLT after d	rying	600 s	18,3631 nA 1	10,8914 GΩ	4,977	1,61
TechO									

Main Insulation

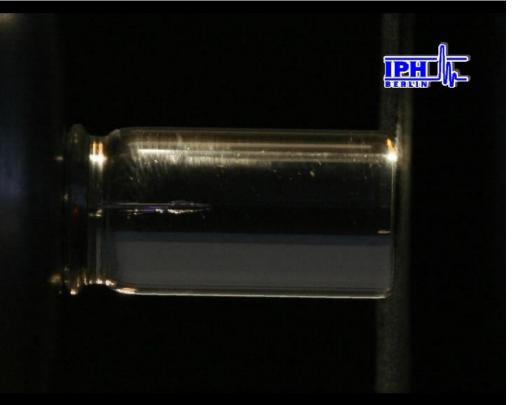
- Water Content Measurement with Dielectric Frequency Response
- Insulation Resistance Measurement
- Capacitance and Dielectric Dissipation Factor Measurement
- Partial Discharge Measurement

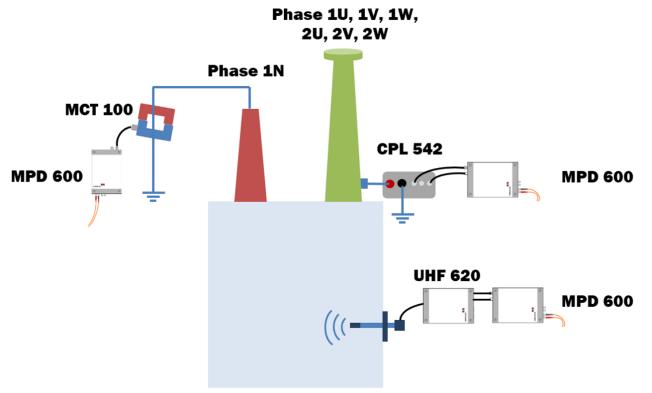
Capacitance and Dissipation Factor Measurement @ 50Hz 220kV Transformer Before and after Drying

Measurement	Tan δ	C	C(10mHz) / C(50Hz)
CHL before drying	0,00811	12,0551 nF	4,4579
CHL after drying	0,00375	11,6719 nF	1,6735
CLT before drying	0,00779	14,0735 nF	3,8066
CLT after drying	0,00383	13,6873 nF	1,6937

Main Insulation

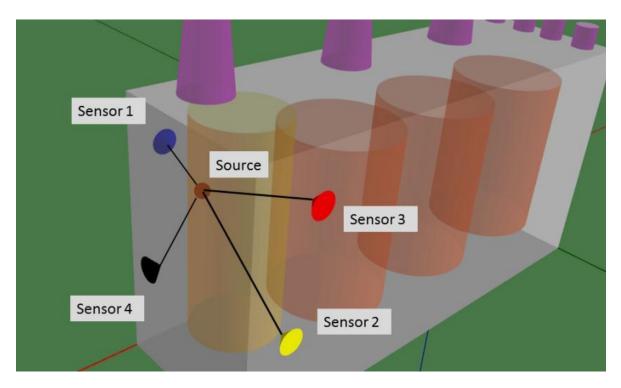
- Water Content Measurement with Dielectric Frequency Response
- Insulation Resistance Measurement
- Capacitance and Dielectric Dissipation Factor Measurement
- Partial Discharge Measurement


PD Damages


Electrical Treeing


PD Coupling Possibilities

Measurement at the Bushing Taps

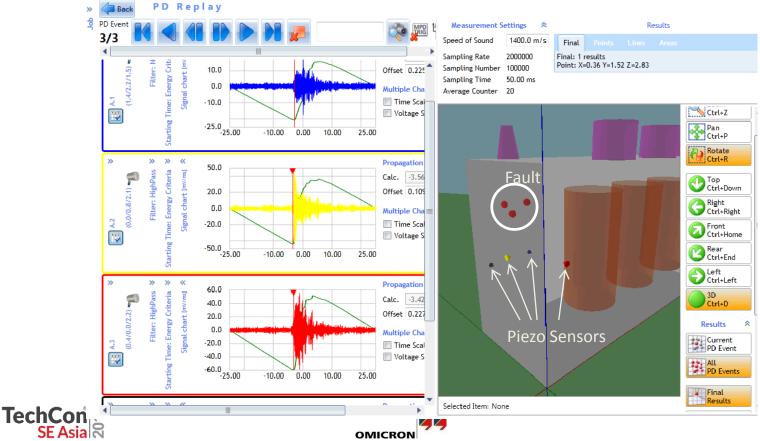

Measurement with Coupling Capacitors

Acoustical PD Location

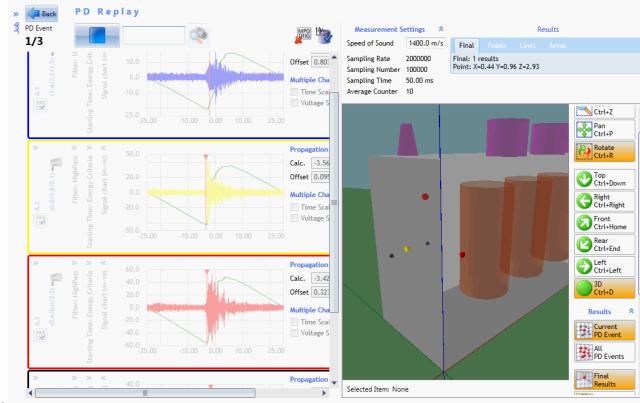
PD Location

Piezo Sensors for the Acoustical PD Location

red


black

blue

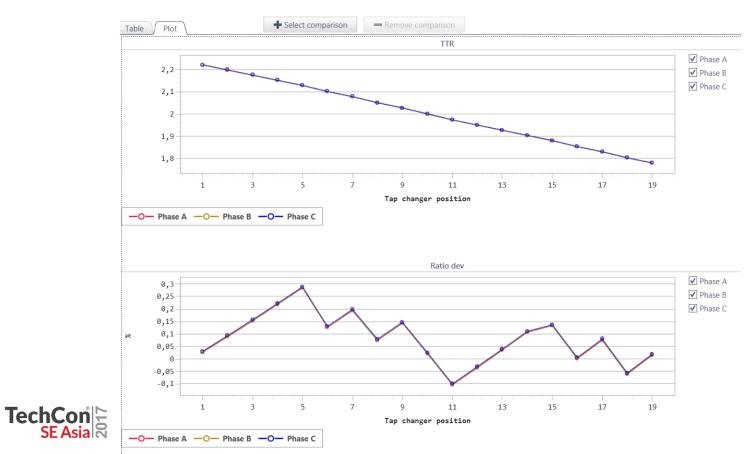


Acoustical PD Location

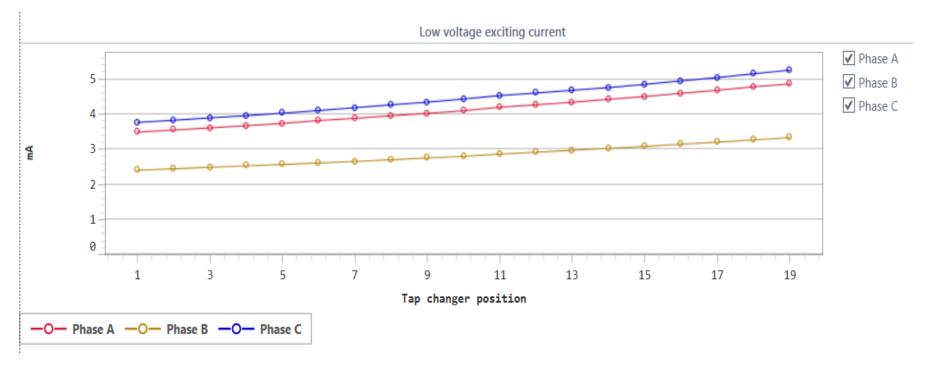
Acoustical PD Location

Transformer Health Assessment

- Introduction
- Diagnostic on Power Transformers
 - Oil
 - Main Insulation
 - Magnetic Core and Coil
 - Diagnostic of the Bushings
 - Diagnostic of the Tap Changer
- Case Study Health Assessment of a Transformer

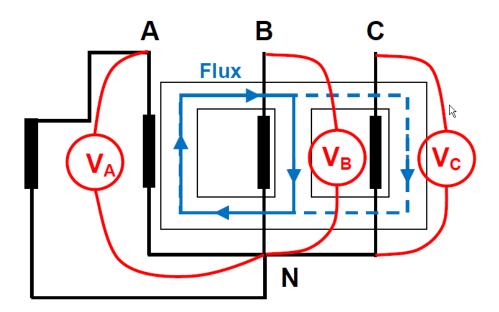

Magnetic Core and Coil

- Insulation Resistance Measurement Core to Frame and Tank
- Ratio, Magnetising Current and Flux Balance Test
- Capacitance Measurement Coils to Ground
- Short Circuit Impedance
- Frequency Response Analysis



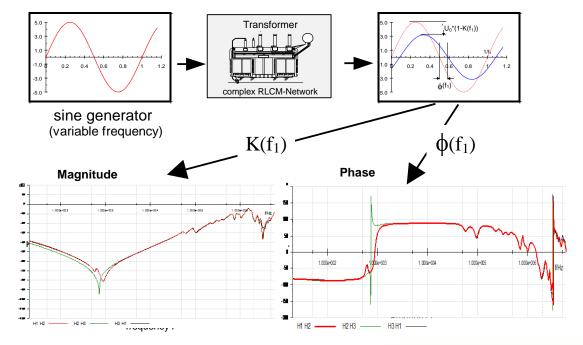
Ratio Measurement HV-LV

Magnetising Currents HV Side



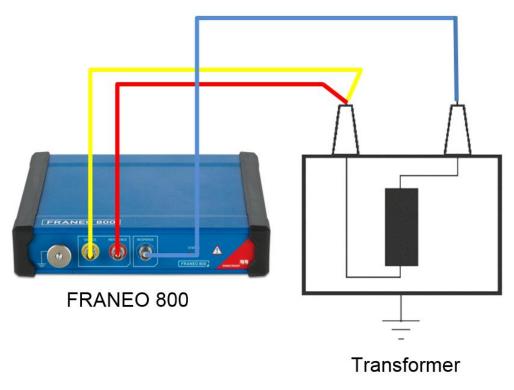
Flux Balance Test

Expected Result (Voltages)								
100%	-70%	-30%						
-50%	100%	-50%						
-30%	-70%	100%						


Magnetic Core and Coil

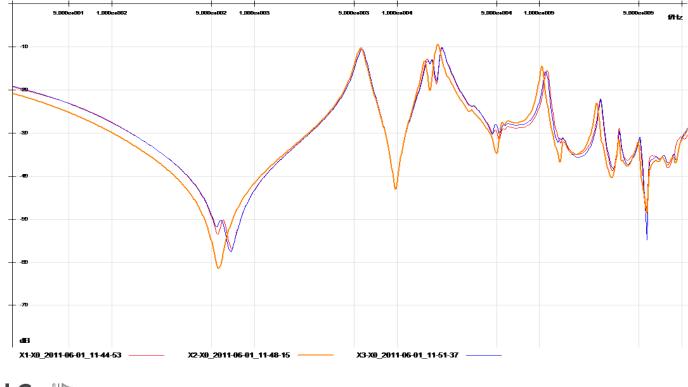
- Insulation Resistance Measurement Core to Frame and Tank
- Ratio, Magnetising Current and Flux Balance Test
- Capacitance Measurement Coils to Ground
- Short Circuit Impedance
- Frequency Response Analysis

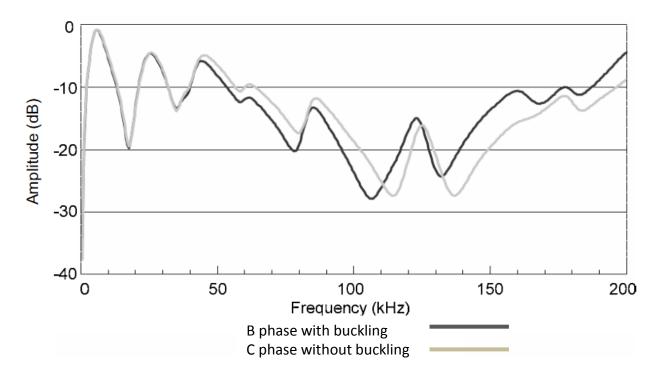
Swept Frequency Response Analysis (SFRA)



OMICRON

 $H(dB) = 20\log_{10}\left(\frac{V_{out}}{V_{in}}\right)$


End to End FRA Measurement


FRA LV Winding – Comparison of the 3 Phases

Failure Modes due to Radial Forces

Source: Cigre Brochure 342 "MECHANICAL-CONDITION ASSESSMENT OF TRANSFORMER WINDINGS USING FREQUENCY RESPONSE ANALYSIS (FRA)"

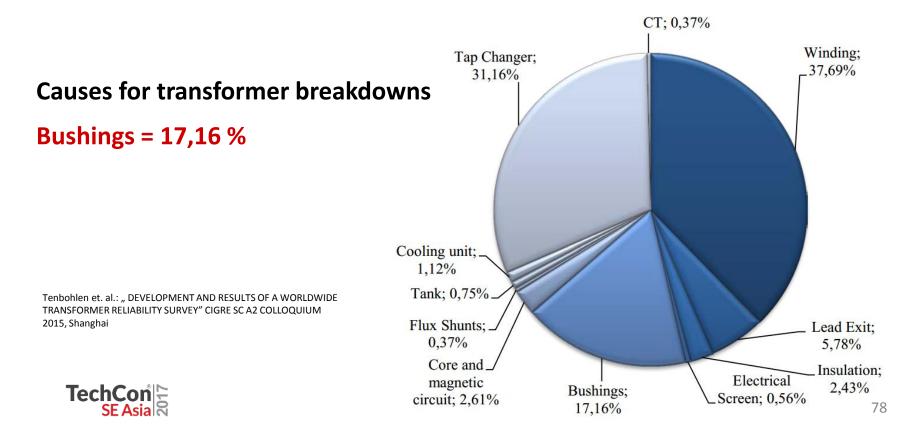
Buckling

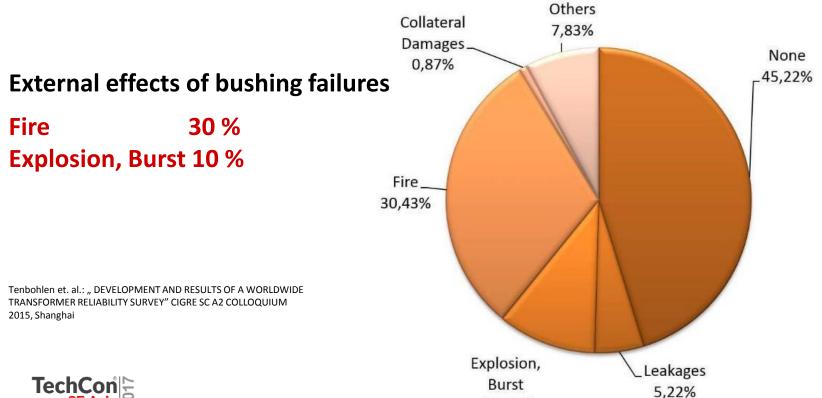
OMICRON

Transformer Health Assessment

• Introduction

• Diagnostic on Power Transformers


- Oil
- Main Insulation
- Magnetic Core and Coil
- Diagnostic of the Bushings
- Diagnostic of the Tap Changer
- Case Study Health Assessment of a Transformer



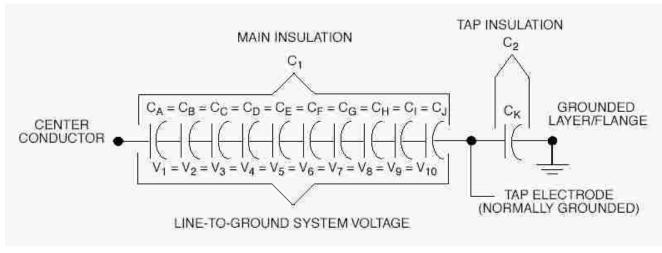
Cigre A2.37 Transformer Failure Statistics

22.000 grid transformers with 150.000 sercice years

Cigre A2.37 Transformer Failure Statistics

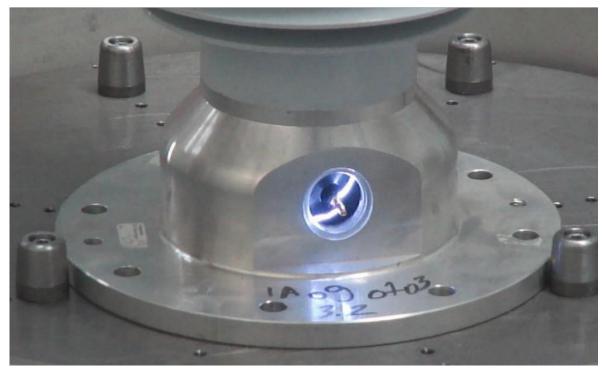
10,43%

Insulation Systems of High Voltage Bushings



OMICRON

Capacitive Bushings



Current at the Measurement Tap $50Hz \rightarrow I_C = U \ \omega \ C = 10 \ \dots 100mA$ $BIL \ 1.2\mu s \rightarrow I_C = C \ dU/dt = 200A$

Arcing at the Measurement Tap

Source: Norbert Koch "Diagnoseverfahren an Hochspannungsdurchführungen aus Herstellersicht", HdT Essen 2013

Infrared Thermography

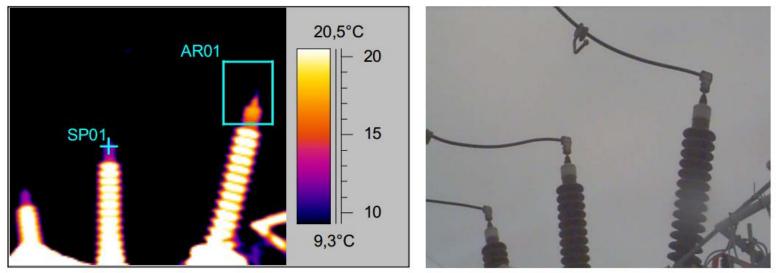
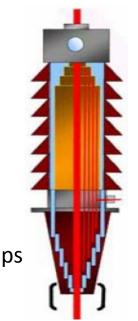
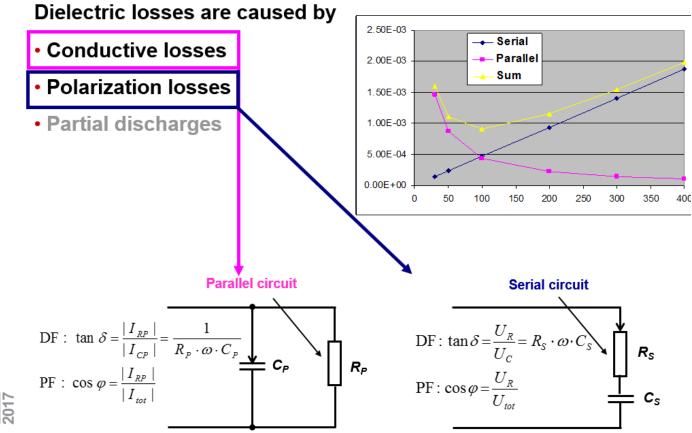


Fig.13. Measurement indicating poor current path between bushing inner and outer terminal.

Source: ABB Brochure "Bushing diagnostics and conditioning", 2750 515-142 en



Fault Mechanisms and Diagnosis


- Partial breakdowns
 - Measurement of capacitance
 - TanDelta measurement
 - PD measurement
- Voids, cracks
 - Measurement of capacitance (RBP)
 - PD measurement
- Contact problems on measurement taps
 - Tan Delta voltage sweep (tip-up test)
- Ageing, moisture
 - Dielectric response measurements
 - TanDelta

Voltage [kV]	No. of layers	% change
123	14	7.1
245	30	3.3
420	40	2.5
550	55	1.8

Definitions of Dielectric Losses

Standards


Туре	RIP	OIP	RBP
Main insulation	Resin impregnated paper	Oil impregnated paper	Resin bonded paper
DF / tan delta (20°C, IEC60137)	< 0.7 %	< 0.7 %	< 1.5 %
PF cos phi (20°C, IEEE C57.19.01)	< 0.85 %	< 0.5 %	< 2 %
Typical new values	0.3-0.4 %	0.2-0.4 %	0.5-0.6 %
PD (IEC60137) at U _m 1.5 U _m /√3 1.05 U _m /√3	< 10 pC < 5 pC < 5 pC	< 10 pC < 5 pC < 5 pC	< 300 pC

Cigre WG A2.34 Brochure 445

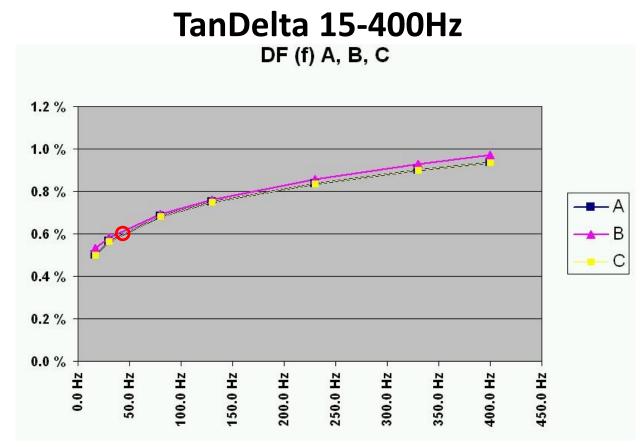
Guide for Transformer Maintenance

RBP Bushing Oil-Filled Cracks

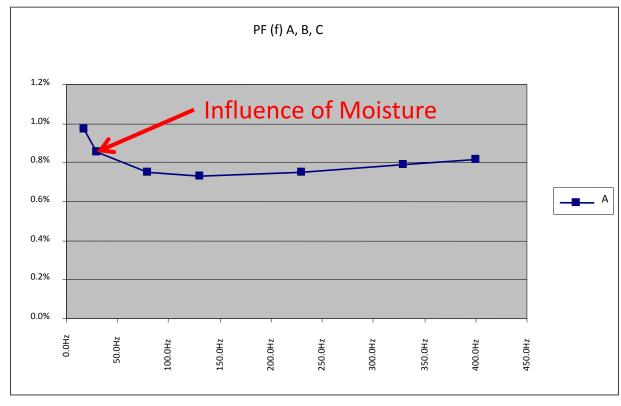
Oil Ingress by Capillare Effect


RBP – **Bushings**

Cracks in the Insulation

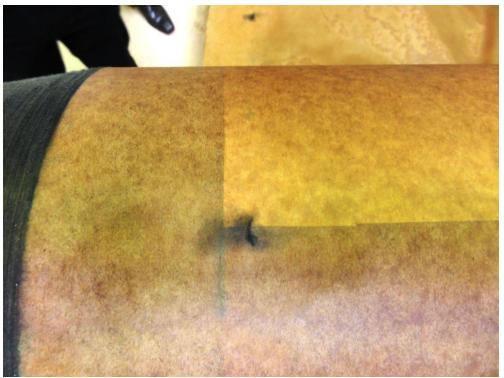


Measurement on 220kV RBP Bushings (1971)



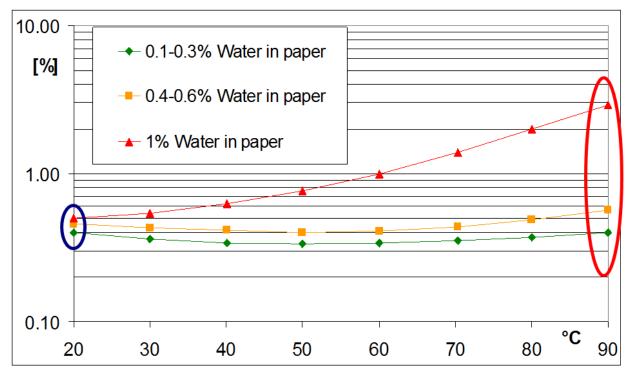
RBP Bushing 123kV (1963)

OIP Bushings


- Paper of the OIP bushings ages particularly at high temperatures
- Through aging the dielectric losses will increase
 -> this increases the dissipation factor
- Temperature dependent aging decomposes the paper and produces additional water
 -> this accellerates the aging

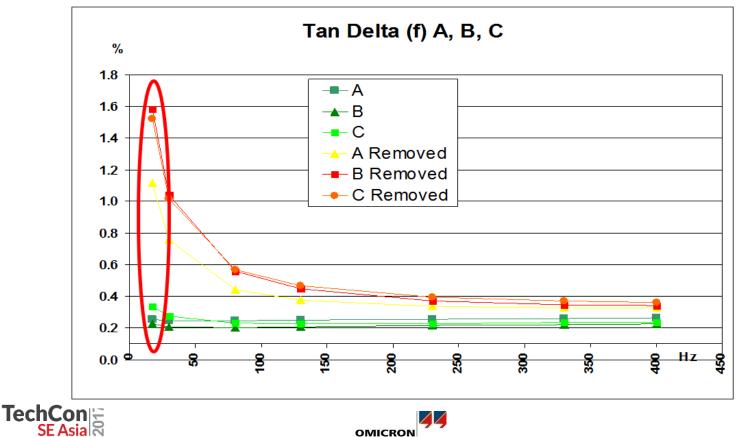
OIP Bushing

Breakdown at the Sharp Edge of the Foil

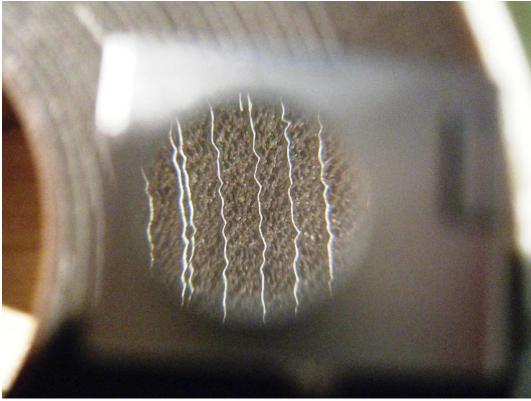


Source: Hubert Goebel GmbH

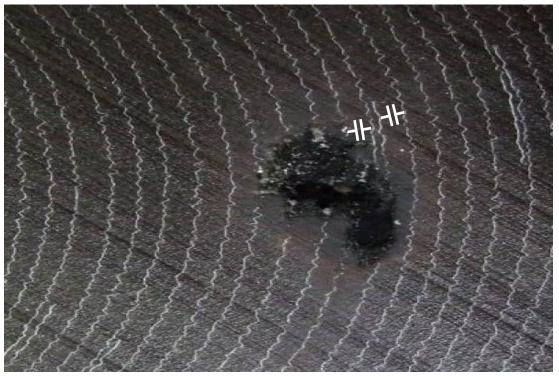
Tan Delta (T) at 50Hz (OIP DF)



Source: ABB, Bushing diagnostics and conditioning

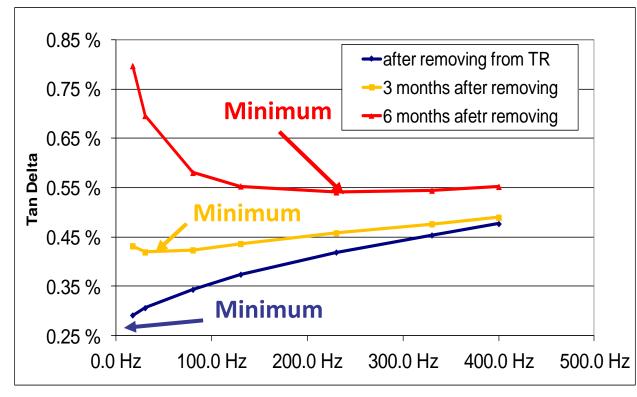


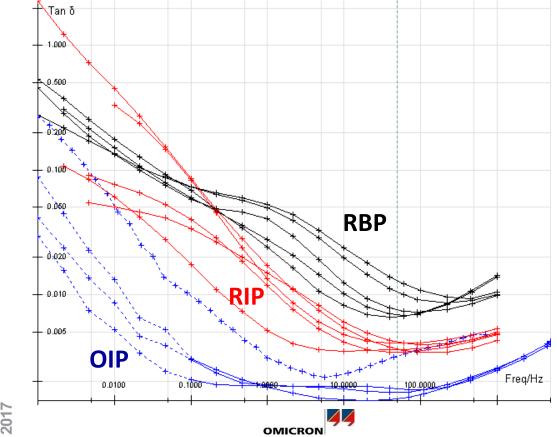
Tan Delta (f) at 30°C (33kV OIP DF)

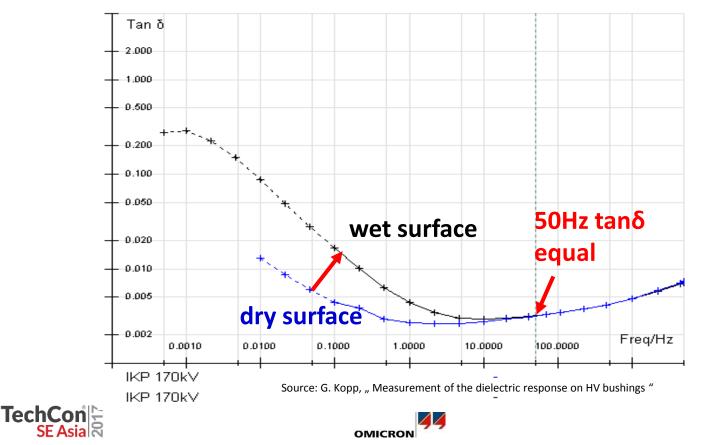

RIP Bushings

Partial Breakdown on a RIP Bushing

Source: B. Heil, "Diagnose und Bewertung von Durchführungen", OMICRON AWT Germany 2010


220kV RIP Bushing, Stored Outside


220kV RIP Bushing, Stored Outside

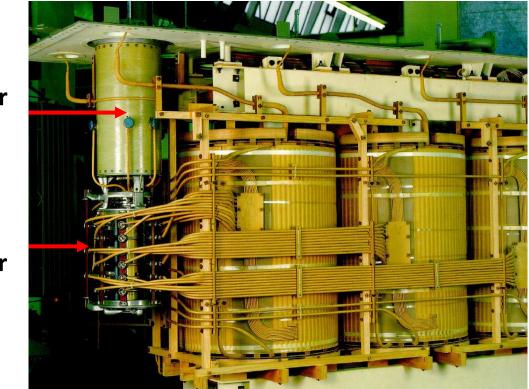


Dielectric Response on RIP, RBP and OIP Bushings

Dielectric Response with Dry and Wet Surface

Transformer Health Assessment

• Introduction

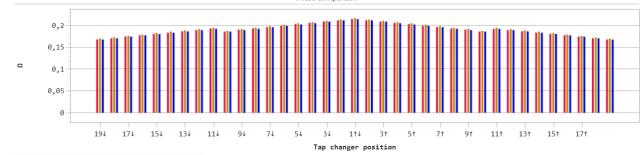

• Diagnostic on Power Transformers

- Oil
- Main Insulation
- Magnetic Core and Coil
- Diagnostic of the Bushings
- Diagnostic of the Tap Changer
- Case Study Health Assessment of a Transformer

On Load Tap Changers

Diverter Switch

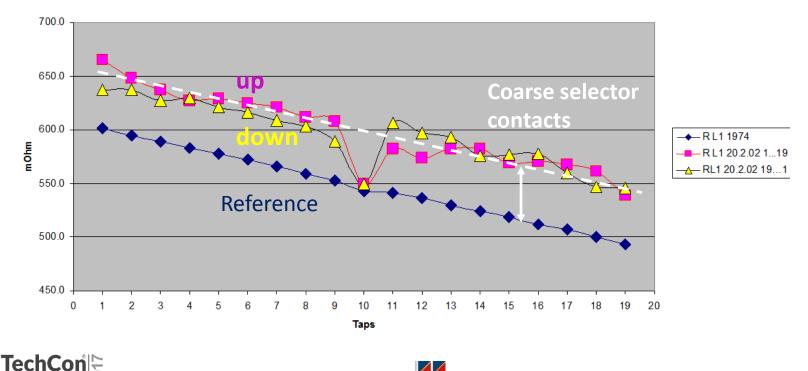
Tap Selector



Maschinenfabrik Reinhausen

Static Winding Resistance Measurement HV on all Taps for Tap Selector Diagnosis

Phase comparison

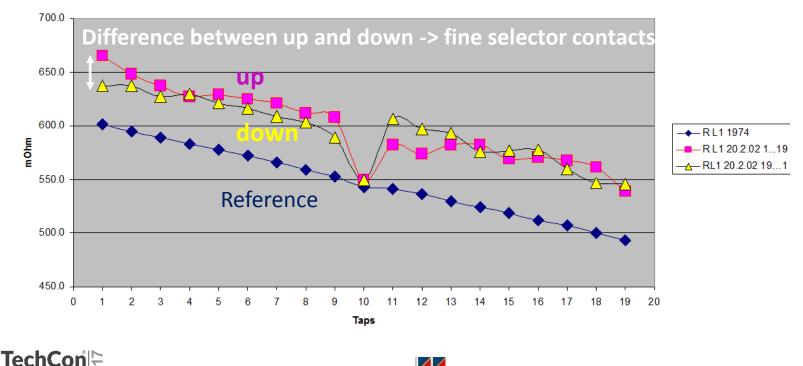

Phase A Phase B

Phase C

Static Winding Resistance Measurement HV on all Taps

for Tap Selector Diagnosis

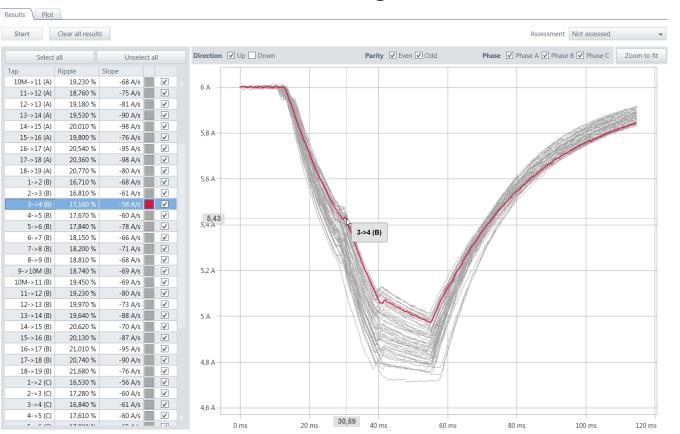
R L1 (referred to 20°C)


OMICRO

106

Static Winding Resistance Measurement HV on all Taps

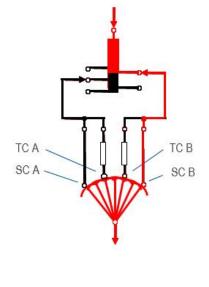
for Tap Selector Diagnosis


R L1 (referred to 20°C)

OMICRO

Dynamic Winding Resistance Measurement HV 1-19


for Diverter Switch Diagnosis



108

Vibroacoustic Measurements on OLTC

U. Seltsam, "Vibroacoustic Measurements on OLTC", CEPED Dubai, 2016

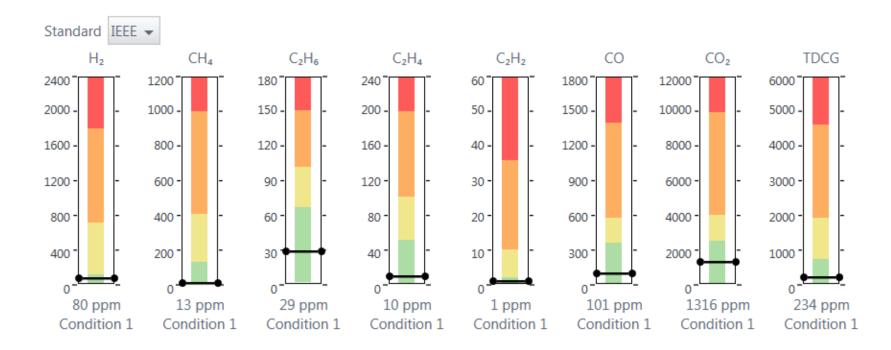
Transformer Health Assessment

- Introduction
- Diagnostic on Power Transformers
 - Oil
 - Main Insulation
 - Magnetic Core and Coil
 - Diagnostic of the Bushings
 - Diagnostic of the Tap Changer

Case Study – Health Assessment of a Transformer

Man. Year 1993

Counter OLTC 39.414


• Oil Analysis

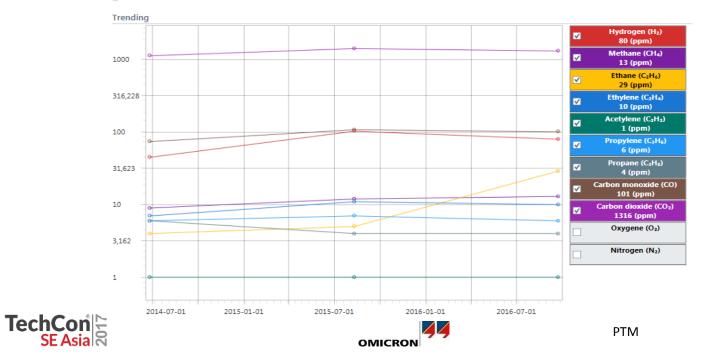
- Measuement of the Moisture in the solid Insulation
- Capacitance and tan δ Measurement of the Bushings
- Measurement of Turns Ratio and the Magnetising Currents
- Winding Resistance Measurements of the HV Windings on all Taps
- Measurement of the Short Circuit Impedance

DGA 2016

DGA 2016

Ratio Table

CH4 H2	<u>C2H2</u> C2H4	C2H2 CH4	<u>C2H6</u> C2H2	C2H4 C2H6	C2H2 C2H6	C2H2 C2H6	C2H4 C3H6	CO2 CO	<u>02</u> N2	C2H2 H2			
0,16	0,10	0,08	29,00	0,34	2,23	0,03	1,67	13,03	0,46	0,01			
Doernen	burg		No faul	No fault									
Rogers				Gas concentration values are too low - no reliable diagnosis can be provided by this method									
MSS				Gas concentration values are too low - no reliable diagnosis can be provided by this method									
IEC 6059	99			Gas concentration values are too low - no reliable diagnosis can be provided by this method									
CO2/CO	ł.			Ok									
02/N2				Ok									
C2H2/H	2			Ok									
	H2 0,16 Doernen Rogers MSS IEC 6059 CO2/CO O2/N2	H2 C2H4 0,16 0,10 Doernerburg Rogers MSS IEC 6059 CO2/CO	H2 C2H4 CH4 0,16 0,10 0,08 Doerneurg Rogers MSS - - IEC 6059 - - C02/CC - - 02/N2 - -	H2 C2H4 CH4 C2H2 0,16 0,10 0,08 29,00 Doernerburg Rogers MSS IEC 6059 IEC 605/CC O2/N2	H2 C2H4 CH4 C2H2 C2H6 0,16 0,10 0,08 29,00 0,34 Doernenburg No fault Rogers Gas con MSS Gas con IEC 60599 Gas con C02/CO Ok O2/N2 Ok	H2 C2H4 CH4 C2H2 C2H6 C2H6 0,16 0,10 0,08 29,00 0,34 2,23 Doernerburg No fault Gas correntration Rogers Gas correntration Gas correntration MSS Gas correntration Gas correntration IEC 6059 Gas correntration C02/CO Ok Ok	H2 C2H4 CH4 C2H2 C2H6 C2H6 C2H6 0,16 0,10 0,08 29,00 0,34 2,23 0,03 Doernerburg No fault Rogers Gas concentration values a MSS Gas concentration values a IEC 60599 Ok O2/N2 Ok	H2 C2H4 CH4 C2H2 C2H6 C2H6 C2H6 C2H6 C3H6 0,16 0,10 0,08 29,00 0,34 2,23 0,03 1,67 Doernenburg No fault Rogers Gas concentration values are too low MSS Gas concentration values are too low IEC 60599 Ok 02/N2 Ok	H2 C2H4 CH4 C2H2 C2H6 C2H6 C2H6 C2H6 C3H6 CO 0,16 0,10 0,08 29,00 0,34 2,23 0,03 1,67 13,03 Doernenburg No fault Rogers Gas concentration values are too low - no relia MSS Gas concentration values are too low - no relia IEC 60599 Ok Q2/N2 Ok	H2 C2H4 CH4 C2H2 C2H6 C2H6 C2H6 C3H6 CO N2 0,16 0,10 0,08 29,00 0,34 2,23 0,03 1,67 13,03 0,46 Doerner/r No fault Cas concentration values are too low - no reliable diagonare Gas concentration values are too low - no reliable diagonare Gas concentration values are too low - no reliable diagonare MSS Gas concentration values are too low - no reliable diagonare Gas concentration values are too low - no reliable diagonare IEC 60599 Gas concentration values are too low - no reliable diagonare Ok O2/N2 Ok Ok Ok Ok Ok	H2 C2H4 CH4 C2H2 C2H6 C2H6 C2H6 C3H6 CO N2 H2 0,16 0,10 0,08 29,00 0,34 2,23 0,03 1,67 13,03 0,46 0,01 Doernenburg No fault Rogers Gas concentration values are too low - no reliable diagnosis can MSS Gas concentration values are too low - no reliable diagnosis can IEC 60599 Ok 02/N2 Ok		



DGA Trend from 2014 to 2016

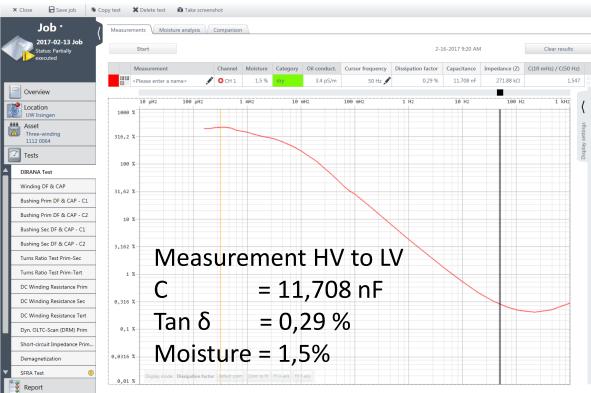
Standard IEEE C57.104 (TDCG) 👻

Sample date	H ₂ (ppm)	CH ₄ (ppm)	C ₂ H ₆ (ppm)	C ₂ H ₄ (ppm)	C ₂ H ₂ (ppm)	CO (ppm)	CO ₂ (ppm)	Overall assessment	TDC	5 (ppm)	TDCG ppm/day	Recommended test interval
2016-09-22	80	13	29	10	1	101	1316	Condition 1		234	-0,01	Annual
2015-08-10	103	12	5	11	1	108	1423	Condition 1		240	0,24	Annual
2014-06-26	45	9	4	7	1	74	1131	Condition 1		140		

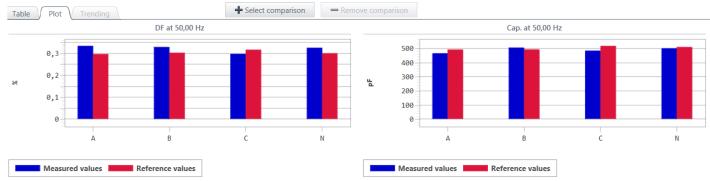
Condition 1 All gas concentrations are within the expected limits. The transformer is operating satisfactorily.

- Oil Analysis
- Measuement of the Moisture in the Solid Insulation
- Capacitance and tan δ Measurement of the Bushings
- Measurement of Turns Ratio and the Magnetising Currents
- Winding Resistance Measurements of the HV Windings on all Taps
- Measurement of the Short Circuit Impedance

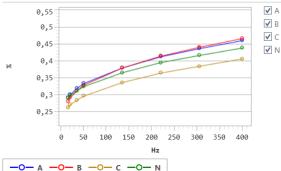
Measurement of the Relative Moisture in Oilr


T = 47,8°C RH = 6,3 %

Measurement of the Moisture in the Solid Insulation

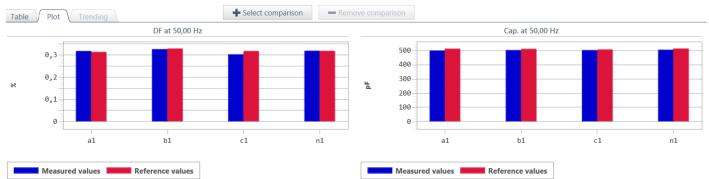


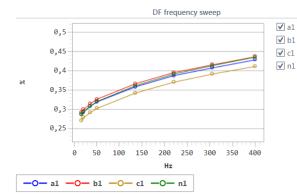
- Oil Analysis
- Measuement of the Moisture in the Solid Insulation
- Capacitance and tan δ Measurement of the Bushings
- Measurement of Turns Ratio and the Magnetising Currents
- Winding Resistance Measurements of the HV Windings on all Taps
- Measurement of the Short Circuit Impedance

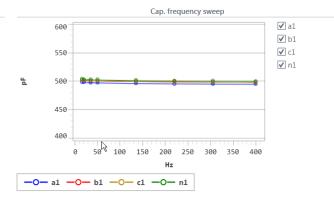


C- und Tan δ of the HV Bushings

DF frequency sweep


Cap. frequency sweep ✓ A 600 ✓ B ✓ C 550 ✓ N 500 Ч 0000 450 400 50 100 150 200 250 300 350 400 Hz -O-A -O-B -O-C -O-N

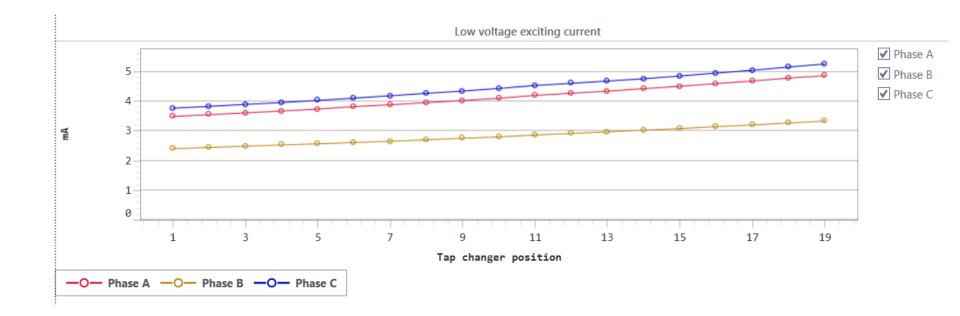




R

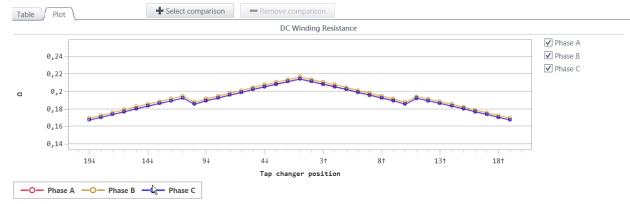
C- und Tan δ of the LV Bushings

- Oil Analysis
- Measuement of the Moisture in the Solid Insulation
- Capacitance and tan δ Measurement of the Bushings
- Measurement of Turns Ratio and the Magnetising Currents
- Winding Resistance Measurements of the HV Windings on all Taps
- Measurement of the Short Circuit Impedance



Ratio Measurement HV - LV

Magnetising Current HV



- Oil Analysis
- Measuement of the Moisture in the Solid Insulation
- Capacitance and tan δ Measurement of the Bushings
- Measurement of Turns Ratio and the Magnetising Currents
- Winding Resistance Measurements of the HV Windings on all Taps
- Measurement of the Short Circuit Impedance

Static Winding Resistance Measurement HV

OMICRO

Dynamic Winding Resistance Measurement HV

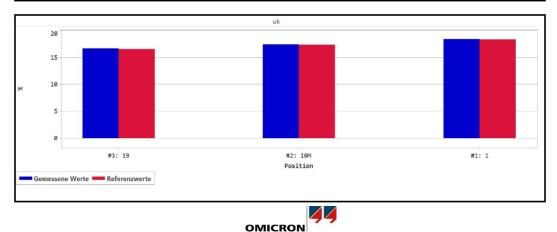
Clear all results Assessment Not assessed Start Direction 🔽 Up 🗌 Down Parity 🖌 Even 🖌 Odd Phase ✓ Phase A ✓ Phase B ✓ Phase C Zoom to fit Select all Unselect all Slope Ripple -68 A/s 🗾 🗸 10M->11 (A) 19.230 % 6 A -75 A/s 📃 🗹 11->12 (A) 18,760 % -81 A/s 🗾 🗸 12->13 (A) 19,180 % -90 A/s 🗾 🗸 13->14 (A) 19,530 % -98 A/s 🗾 🗸 14->15 (A) 20.010 % 5,8 A -76 A/s 🗾 🗸 15->16 (A) 19,800 % 16->17 (A) 20.540 % -95 A/s 📃 🗹 17->18 (A) 20,360 % -98 A/s 🗾 🗸 \checkmark 18->19 (A) 20,770 % -80 A/s 5,6 A -68 A/s 🗾 🗸 16.710 % 1 -> 2 (B) -61 A/s 🗾 🗸 2->3 (B) 16,810 % -58 A/s I 4->5 (B) 17,670 % -60 A/s 5,43 -78 A/s 📃 🗹 5->6 (B) 17.840 % 3->4 (B) -66 A/s 6->7 (B) 18.150 % -71 A/s 7->8 (B) 18,200 % -68 A/s 8->9 (B) 18.810 % -69 A/s 🗾 🗸 9->10M (B) 18,740 % 5.2 A--69 A/s 🗾 🗸 10M->11 (B) 19.450 % -80 A/s 11->12 (B) 19.230 % -73 A/s 🗾 🗸 12->13 (B) 19,970 % -88 A/s 13->14 (B) 19,640 % 5 A -70 A/s 🗾 🗸 14->15 (B) 20,620 % -87 A/s 🗾 🗸 15->16 (B) 20.130 % -95 A/s 🗾 🗸 16->17 (B) 21,010 % -90 A/s 17->18 (B) 20.740 % 4.8 A -76 A/s 🗾 🗸 18->19 (B) 21.680 % -56 A/s 🗾 🗸 1->2(C) 16,530 % -60 A/s 🗾 🗸 2->3 (C) 17.280 % -61 A/s 🗾 🗸 3->4 (C) 16,840 % 4.6 A 4->5 (C) 17.610 % -60 A/s 🗾 🗹 30,59 20 ms 40 ms 17.000 0/ 0 ms 60 ms 80 ms 100 ms 120 ms

Results

Тар

Plot

- Oil Analysis
- Measuement of the Moisture in the Solid Insulation
- Capacitance and tan δ Measurement of the Bushings
- Measurement of Turns Ratio and the Magnetising Currents
- Winding Resistance Measurements of the HV Windings on all Taps
- Measurement of the Short Circuit Impedance



Short Circuit Impedance

Ergebnis	stabelle	•								
Position	Phase	I	U	U Phase	Rk	Xk	Zk	uk ber	uk abw	Bewertung
	Α	3,000 A	63,432 V	88,99 °	371,081 mΩ	21,140 Ω	21,143 Ω			
#3: 19	В	3,001 A	64,429 V	-270,99 °	369,856 mΩ	21,468 Ω	21,471 Ω	16,65 %	0,93 %	Bestander
	С	3,000 A	63,684 V	89,02 °	362,489 mΩ	21,228 Ω	21,232 Ω			
	Α	2,847 A	79,475 V	89,27 °	355,965 mΩ	27,915 Ω	27,917 Ω		0,36 %	Bestanden
#2: 10M	В	2,825 A	79,471 V	-270,84 °	413,374 mΩ	28,132 Ω	28,135 Ω	17,36 %		
	С	2,841 A	79,475 V	88,84 °	568,405 mΩ	27,972 Ω	27,978 Ω			
	Α	2,183 A	79,476 V	89,34 °	422,268 mΩ	36,404 Ω	36,406 Ω			
#1: 1	В	2,165 A	79,478 V	-270,81 °	518,063 mΩ	36,710 Ω	36,713 Ω	18,38 %	0,43 %	Bestanden
	С	2,179 A	79,476 V	88,86 °	725,127 mΩ	36,468 Ω	36,475 Ω			

Diagramme für Standardprüfung

Transformer Assessment

Date of assessment	2017-02-20	Transformer Assessment										
Responsible	XXX			Ιίċ	ansi	JIII	er A	sse	SSIII	ent		
Location/Substation	XXX											
Transformer ID	XXX				ssment							
Serial number	XXX		Exc	hange	priority	3						
Year of manufacturing	1993											
Expected life time (years)	45											
		new									old	
		10	9	8	7	6	5	4	3	2	1	
Transformer age	24 Years	;					Х					
		excelle	ent								bad	
		10	9	8	7	6	5	4	3	2	1	
				X								Remarks
Core		Х										
Winding		Х										
Cellulose insulation				Х								
Oil				Х								
HV bushings		Х										
LV bushings		Х										
Tap changer		Х										
Motor drive		Х										
Cooling system		Х										
Oil leak		Х										
Corrosion protection		Х										
LV wiring and protection		X										

Thank You !

michael.krueger@omicronenergy.com

